2.06.08-87

© , 2011

,

II

1			1
2			1
3			2
4	•••		2
5			3
6			
7			24
8			
	•••••		
9			40
10			46
10			52
	()	56
	(´)	
		,	59
	()	
			63
	()	k
			, 65
	(,	
	(,	
			,
			66

IV

Concrete and reinforced concrete hydraulic structures

2013-01-01

1

;

(
).

2

```
53231-2008

26633-91

28.13330.2012 « 2.03.11-85

»

40.13330.2012 « 2.06.06-85*

58.13330.2012 « 33-01-2003

»

63.13330.2012 « 52-01-03

»

131.13330.2012 « 23-01-99* »
```

41.13330.2012					
3					
3.1 ;	:	; , , , , , , , , , , , , , , , , , , ,			
3.2	;	:	,		
3.3	•	:	,	;	
3.4		: ;	,		•
		,			
4 4.1					
4.2	,	58.13330.	, (,	
				·	
4.3	,		,		
4.4	,	,			

4.5						,								,
4.6												•	,	,
4.7										:				•
); -	; -					((,
;			.)	;				()				
								٠			-			
5														
5.1									26633	3				
5.2														
)	:					,	,	(),	q = 0,	95.			
				q =	= 0,90									
	_	7.5	10	10.5	1.5	15.5	20	22.5	2.5	27.5		= 0,85		
	: 5;	7,5;	10;	12,5;	15;	17,5;	20;	22,5;	25;	27,5;	30;	35;	40.	
)		•						,	•				;	
			: _t 0	,8; _t 1,	.2; _t	1,6; t2	2,0;	_t 2,4;	t 2,8;	t 3,2;				

11.13330.2012						
)						
)	: F50; F75; F100; F1	150; F200; F30	00; F400; F500	; F600; F700; F80	00; F1000);
5.3	: W2; W4; W6	5; W8; W10; V	W12; W14; W	16; W18; W20.		
,	: ,					
,	,		,		.6	.8
5.4					.0	.0
		,	,	,		•
5.5	. ()	,		,	,	
, () ,			180 , - 28		,
,	. –			,		
5.6		·				
			,	,		
	(20.	٠	.)
30 – 5.7	; ,	15 –			;	
	,	,	()	`		
),		

(

1.

1

	25	26 – 50	51 – 100	101 – 150	151 – 200	201 – 250	251 – 300
	F50	F100	F150	F200	F300	F400	F600
	F100	F150	F200	F300	F400	F600	F800
	F200	F300	F400	F500	F600	F800	F1000
1 :	- 20°.	10°;		10	20 °	0	;
2		131.13330	,	_			
53231,		,			:		28.13330
			,				

```
F200 - F300 - , F150 - , F150
```

W4.

2

, °	5	5	10	20 30		
		10	20			
10	W2	W4	W6	W8		
10 30	W4	W6	W8	W10		
30	W6	W8	W10	W12		
_		30				
	W14 .					

5.9 (, -3, , .),

5.10

5.11 25, — W8.

_ . ,

5.12

5.13 , 8, 9, 10

, 8, 9, 10. 5.14 $R_b R_{bt}$ ()

bi ,

, , , ,

5.

 $R_{b,ser}$

 $R_{bt,ser}$, 9.2, 9.3, 10.13.

, 9.2, 9.3, 10.13. 5.15 ,

$$\gamma_{b3} = 1 + c / h_t \tag{1}$$

b3 = 2,- , , , ,

 h_t – , , ,

.

. I II , , III IV , c 6.

				,	(/ 2)	
			;			
		$R_b \ R_{bi}$			R_{bt}	
	R_{bn} ; $R_{b,ser}$	-		R_b	-	-
1	2	3	4	5	6	7
5	3,5 (35,7)	0,55(5,61)	0,39(3,98)	2,8(28,6)	0,37(3,77)	0,26(2,65)
7,5	5,5(56,1)	0,70(7,14)	0,58(5,92)	4,5(45,9)	0,48(4,89)	0,39(3,98)
B10	7,5(76,5)	0,85(8,67)	0,78(7,96)	6,0(61,2)	0,57(5,81)	0,52(5,35)
B12,5 B15	9,5(96,5) 11,3(115)	1,00(10,2) 1,15(11,7)	0,95(9,70) 1,10(11,2)	7,5(76,5) 8,9(91,0)	0,66(6,73)	0,63(6,42) 0,73(7,45)
B17,5	13,0(133)	1,13(11,7) 1,27(13,0)	1,10(11,2)	10,3(105)	0,75(7,65) 0,83(8,41)	0,73(7,43) 0,80(8,20)
B20	14,9(152)	1,40(14,3)	1,38(14,1)	11,7(120)	0,90(9,18)	0,90(9,15)
B22,5	16,7(170)	1,50(15,3)	_	13,1(134)	0,97(10,0)	_
B25	18,5(189)	1,60(16,3)	_	14,5(148)	1,05(10,7)	_
B27,5	20,2(206)	1,70(17,3)	_	15,8(161)	1,12(11,4)	_
B30	22,0(224)	1,80(18,4)	_	17,0(173)	1,20(12,2)	_
B35	25,5(260)	1,95(19,9)	_	19,5(199)	1,30(13,3)	_
B40	29,0(296)	2,10(21,4)	_	22,0(224)	1,40(14,3)	_

	(, / ²)
	,	
	$R_{btn}; R_{bt, ser}$	R_{bt}
_t 0,8	0,8 (8,1)	0,62 (6,32)
B _t 1,2	1,2 (12,2)	0,93 (9,49)
B _t 1,6	1,6 (16,3)	1,25 (12,7)
$B_{t} 2,0$	2,0 (20,4)	1,55 (15,8)
B _t 2,4	2,4 (24,5)	1,85 (18,9)
$B_t 2,8$	2,8 (28,6)	2,15 (21,9)
$B_t 3,2$	3,2 (32,4)	2,45 (25,0)

	,			
		1	2	3
1				
)		<i>b</i> 1	0,9
)		<i>b</i> 1	1,1
)		b2	1,3
	,	,	<i>D2</i>	1,5
	,			
	•			
)		<i>b</i> 2	1,0
)		<i>b</i> 3	5.15
	`			5.16
)		<i>b</i> 4	5.16
)		<i>b</i> 5	5.17, 5.18 10.9
2)		<i>b</i> 6	10.7
)		<i>b</i> 7	1,1
)		<i>b</i> 7	1,2
	,			,
)			
	:			
	A TIT D	-I, A-II,	<i>b</i> 7	1,3
	A-III, Bp-I	;		1.2
		;	<i>b</i> 7	1,2 1,1
)		b7 b8	5.19
)		<i>b</i> 8	5.20
	,)		<i>b</i> 10	5.21
)		<i>b</i> 11	5.22

	,		I	
	1		2	3
)		:	<i>b</i> 12	5.23
)	;	·	b13 b13 b14	1,0 5.24 5.25
)			<i>b</i> 15	5.26
1 $b = 2,0.$ 2		,	,	, b = 0,45
3	b14 1 b15		,	

6

	5	7,5	10	12,5	15	20	25	30	35	40
С,	8,0	7,9	7,7	7,5	7,3	6,7	6,1	5,5	4,9	4,4

5.16

$$\gamma_{b4} = 1 - K(1 - 1/\gamma_{b3}), \qquad (2)$$

K –

K=0.

K

K $(b_f-b)/h_f \ge 6$

 $K=1-h_f/(2h_t),$ (3)

 $(b_f > b) / h_f < 6 - b_f h_f -$ 5.17

:

```
41.13330.2012
         )
                                                                \gamma_{b5} = \left[1 + \left(\sigma_1 / \left|\sigma_3\right|\right) \left(R_b / R_{bt}\right)\right]^{-1};
                                                                                                                                                                                              (4)
                                                               \gamma_{b5} = [1 + (|\sigma_3| / _1)(R_{bt}R_b)]^{-1},
                                                                                                                                                                                              (5)
   \sigma_1 \sigma_3 –
                                                                                                          b5 = 1,0.
       5.18
         )
                                                                \gamma_{b5} = 1 + 4(1 - \alpha_2)(\sigma_1 / R_b);
                                                                                                                                                                                              (6)
         )
                                                                                                                                    (4);
                                              \gamma_{b5} \ = \left\{ \ 1 + \left[ \ \left( \ \left| \sigma_2 \right| + \left| \sigma_3 \right| \ \right) / \sigma_1 \ \right] \left( \ R_{bt} \ / R_b \ \right) \right\}^{-1};
                                                                                                                                                                                              (7)
         )
                                                               \gamma_{b5} = \left\{1 + \left[\left(\sigma_1 + \sigma_2\right) / \left|\sigma_3\right|\right] \left(R_b / R_{bt}\right)\right\}^{-1};
                                                                                                                                                                                              (8)
       \alpha_2
       \sigma_2
                                                     I
                                                                   \mathbf{II}
                                                                                                                                      \alpha_2
                          \alpha_2
                                                                              \alpha_2 = 0.5(1 - \sigma_1 / R_b)
                                                                                                                                                                                              (9)
                                                          \alpha_2 = 0,15.
       5.19
b8 = 1,0 -
                                               8d (d -
                                                                                                         );
 <sub>b8</sub>=1,2 -
                                                                                                                                                              8d.
      5.20
                                                            \gamma_{b9} = 1 + 100 \mu^2 v^2 / d ,
                                                                                                                                                                                            (10)
             μ
                               _{s}/E_{b};
```

 $_{b9} = 1,0.$

10

 $100 \, \mu/d \le 0.05$

41.13330.2012 5.21 $\gamma_{b10} = 1 + (a + 4d) / h_t$, (11) $\gamma_{b10} = 1 + (c + 4d) / h_t$; (12)8*d*: $\gamma_{b10} = 1 + (a + 4d_h + \sum a_i^*) / h_t$, (13) $\gamma_{b10} = 1 + (c + 4d_h + \sum a_i^*) / h_t$. (14)(13) (14) a – ; 6; c h_t d_h 5.22 $\gamma_{b11} = \left[1 + \gamma_{b8}\gamma_{b10} \left(\sigma_{mc}/\sigma_{mt}\right)\left(R_{bt,ser}/R_{b,ser}\right)\right]^{-1},$ (15) σ_{mc}, σ_{mt} – $_{b8}$ $_{b10} \ge 2$ $_{b8}$ $_{b10} = 2,0.$ 5.23

 $\gamma_{b12} = 1,3 - \left[\lg N / \left(\lg 2 \cdot 10^6 \right) \right] \cdot \left(1,3 - \gamma'_{b12} \right),$ (16)N -7.

7

		, b12							
								ρ_b	,
		0 - 0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
		0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,0
		0,45	0,50	0,60	0,70	0,80	0,85	0,95	1,0
1	<i>b</i> 12	,	,				28	,	
2	$ ho_b$	$\rho_b = \sigma_b$	$b,\min/\sigma_{b,\max}$	$\sigma_{b,1}$	$\sigma_{b,n}$	nax —			
						•			

8

				$N_{ m min}$				ρ_b
0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
3.10^{3}	6.10^{3}	10^{4}	2·10 ⁴	3·10 ⁴	6·10 ⁴	2·10 ⁵	2·10 ⁶	10 ⁸

N I II 8 $b_{12} = 1,0.$

5.24

 $b_{13} = 0.5.$ I II III IV

5.25

, I II III IV ,

9.

9

		<i>b</i> 14	
,		С	
	0 °		
0,5	1,0/0,9	1,0/0,9	1,0/0,9
1,0	1,1/1,0	1,05/1,0	1,05/1,0
2,0	1,15/1,1	1,10/1,05	1,10/1,05
3,0	1,20/1,15	1,15/1,10	1,15/1,10
-	_	<i>b</i> 14	
180 ,	_	360 .	

5.26	,			
$b_{15} = 1,0$,		:	
$b_{15} = 1,1$;	
5.27		,		
	b		10.	
10				40
, 8 G_b	•	$0,4 E_b$.		
:		- 0,15,)
- 0,20. 5.28				
11.				
5.29				
		,		
:				:
-IV, -V;	-I,	_		-II, -III,
-IV, -V; -IIIC, -IV , -V ;	:		-III ;	
	_			-I. ,
,	•			
	-III , -IV	-V		
5.30				
			12.	,
- (, 15 % .		
,				

Таблица 10

соб	Осадка конуса	Максима- льный		H	ачальные	модули у	лругості при кла	г бетона п ссе бетон	при сжати а по проч	Начальные модули упругости бетона при сжатии и растяжении $E_b \cdot 10^{-3}$, МПа (кгс/см 2) при классе бетона по прочности на сжатие	жении Е _в	.10°, MII	а (кгс/см	,	
уплот- нения бетон- ной смеси	бетон- ной смесн, см	размер крупного заполни- теля, мм	B5	B7,5	B10	B12,5	B15	B17,5	B20	B22,5	B25	B27,5	B30	B32,5	B35
-	2	9	4	S	9	7	00	6	10	11	12	13	14	15	91
Виб-		40	23,0	28,0	31,0	33,5	35,5	37,0	38,5	39,5	41,0	42,0	43,0	44,5	46,0
-одид			(235)	(285)	(315)	(340)	(360)	(380)	(395)	(405)	(420)	(430)	(440)	(455)	(470)
вание	Менее	80	26,0	30,0	34,0	36,5	38,5	40,0	41,5	42,5	43,5	44,5	45,0	46,5	47,5
	4	2000000	(265)	(305)	(345)	(375)	(395)	(410)	(425)	(435)	(445)	(455)	(460)	(475)	(485)
		120	28,5	33,0	36,5	27,0	40,5	42,0	43,5	44,5	45,5	46,5	47,0	48,5	49,5
			(290)	(340)	(365)	(275)	(415)	(430)	(445)	(455)	(465)	(475)	(480)	(495)	(505)
		40	19,5	24,0	27,0	29,5	31,5	33,0	34,5	36,0	37,0	38,0	39,5	41,0	42,5
			(200)	(245)	(275)	(300)	(320)	(335)	(350)	(365)	(380)	(385)	(405)	(420)	(435)
	0 4	80	22,5	28,0	30,0	32,5	34,5	36,0	37,5	39,0	40,0	41,0	42,0	44,0	45,5
	0 +	0.00	(230)	(285)	(305)	(330)	(350)	(370)	(380)	(400)	(410)	(420)	(430)	(450)	(465)
		120	24,5	29,0	32,5	35,0	37,0	38,5	40,0	41,0	42,0	43,0	44,0	45,5	46,5
			(250)	(295)	(330)	(355)	(380)	(395)	(410)	(420)	(430)	(440)	(450)	(465)	(475)
		40	13,0	16,0	18,0	21,0	23,0	25,5	27,0	28,5	30,0	31,5	32,5	34,5	36,0
			(135)	(165)	(185)	(215)	(235)	(260)	(275)	(290)	(305)	(320)	(330)	(350)	(365)
	21 0	80	15,5	19,0	22,0	24,5	26,5	28,5	30,0	31,5	33,0	34,0	35,0	36,5	37,5
	01 - 0	1	(160)	(195)	(225)	(250)	(270)	(290)	(305)	(320)	(335)	(345)	(360)	(370)	(385)
		120	17,5	21,5	24,5	27,0	29,5	31,0	32,5	34,0	35,0	36,0	37,0	38,0	39,0
			(180)	(220)	(250)	(270)	(295)	(315)	(330)	(345)	(350)	(365)	(380)	(390)	(400)
		40	1	13,0	16,0	18,0	21,0	23,0	25,5	27,0	28,5	30,0	31,5	32,5	34,5
	Свыше			(135)	(165)	(182)	(215)	(235)	(260)	(275)	(290)	(305)	(320)	(330)	(350)
	91	80	Į.	15,5	19,0	22,0	24,5	26,5	28,5	30,0	31,5	33,0	34,0	35,0	36,5
				(160)	(195)	(225)	(250)	(270)	(290)	(305)	(320)	(335)	(345)	(360)	(370)

Окончание таблицы 10

	Эсадка энуса	Максима- льный		Ĭ	ачальные	модули	ипругости при кла	г бетона 1 ссе бетон	при сжати на по проч	Начальные модули упругости бетона при сжатии и растяжении E_b 10°°, МПа (кгс/см²), при классе бетона по прочности на сжатие	сжатие E_{ℓ}	, 10°, ME	а (кгс/см	·,	
OFFICE DATE OF	бетон- ной смеси, см	размер крупного заполни- теля, мм	BS	B7,5	B10	B12,5	B15	B17,5	B20	B22,5	B25	B27,5	B30	B32,5	B35
	2	6	4	5	9	7	∞	6	10	Ξ	12	13	14	15	91
Укат-						Вдо	Вдоль слоев бетонирования	бетони	рования						
	ï	40	20,5	25,0	28,0	30,0	32,0	33,0	35,0	36,0	37,0	38,0	39,0	40,5	Ť
		00000	(210)	(255)	(285)	(310)	(325)	(340)	(355)	(365)	(375)	(385)	(400)	(415)	
	1	80	23,0	27,0	30,5	33,0	35,0	36,5	38,0	39,0	40,0	41,0	42,0	44,0	i
			(235)	(275)	(310)	(335)	(350)	(375)	(390)	(400)	(410)	(420)	(430)	(450)	
						Попе	рек слое	в бетонь	Поперек слоев бетонирования	_					
	ī	40	16,0	18,5	20,5	22,0	23,5	25,0	26,0	27,0	28,0	29,0	30,0	31,5	ï
		ì	(165)	(190)	(210)	(225)	(240)	(255)	(265)	(275)	(285)	(295)	(305)	(320)	
	Ä	80	18,0	20,5	22,5	24,0	25,5	27,0	28,0	29,5	30,5	31,5	32,5	34,0	î
			(185)	(210)	(230)	(245)	(260)	(275)	(285)	(300)	(310)	(320)	(330)	(345)	

11

				ρ , / ³ ,	
, / 3		ſ	T	,	
,	10	20	40	80	120
$2,60 \div 2,65$	2,26	2,32	2,37	2,41	2,43
$2,65 \div 2,70$	2,30	2,36	2,40	2,45	2,47
$2,70 \div 2,75$	2,33	2,39	2,44	2,49	2,50

12

			, (/	²)
				T
			(,	
		R_s		R_{sc}
	(/ ²),		R_{sw}	
	$\frac{R_{sn}; R_{s,ser}}{2}$		K_{SW}	
1	2	3	4	5
:				
A-I	235 (2400)	225 (2300)	175 (1800)	225 (2300)
A-II	295 (3000)	280 (2850)	225 (2300)	280 (2850)
A-III, , :				
6 – 8	390 (4000)	355 (3600)	285 (2900)	355 (3600)
10 – 40	390 (4000)	365 (3750)	290 (3000)	365 (3750)
A-IV	590 (6000)	520 (5200)	405 (4150)	400 (4000)
A-V	785 (8000)	680 (6950)	545 (5550)	400 (4000)
-III :				
	540 (5500)	490 (5000)	390 (4000)	200 (2000)
	540 (5500)	450 (4600)	360 (3700)	200 (2000)
т .				
-I, , :	410 (4000)	275 (2050)	270 (2750)	275 (2050)
3 4	410 (4200) 405 (4150)	375 (3850) 365 (3750)	270 (2750)	375 (3850)
5	405 (4150) 395 (4050)	365 (3750) 360 (3700)	265 (2700) 260 (2650)	365 (3750) 360 (3700)
3	373 (4030)	300 (3700)	, ,	300 (3700)
1/3	R_{sw} 255	(2600 /	-III,	
1/3		(2000 /	<i>,</i> ·	
	R_{sc}	•		

(- ,

.)

,

5.31 13, –

•

13

	,		
		s1	. 5.32
		<i>s</i> 2	1,1
		s3	0,9
()		
	_	,	,

5.32

$$R_s' = \gamma_{s1} R_s \,, \tag{17}$$

s1 –

$$\gamma_{s1} = 3,25 - \left[\lg N / \left(\lg 2 \cdot 10^6 \right) \right] (3,25 - \gamma'_{s1})$$
 (18)

 $s_1 = 1,0.$

 $N=2\cdot 10^6.$

1

$$\gamma_{s1}' = (1, 8\eta_0 \eta_s \eta_c) / [1 - \rho_s (1 - \eta_0 \eta_s \eta_c / 1, 8)]. \tag{19}$$

 η_0 - , , 14;

 η_s - , , , 15;

 η_c – , , , 16;

 ρ_s - , $\rho_s = \sigma_{s,\min}, \sigma_{s,\max}$, $\sigma_{s,\max}$ -

(18) $N < 2 \cdot 10^{6}.$ $N \ge 2 \cdot 10^{6} \qquad s_{1} = s_{1}.$

, , , , sl,

(19), 1,0.

14

	ηο
A-I	0,44
A-II	0,32
A-III	0,28

15

,	20	30	40	60
η ,	1	0,9	0,85	0,8
_				η_s
	•			

16

		η
- (- (:))	1,0 0,8
5 1,5 – 3	:	0,8 0,6
1,3 – 3		0,55
	- ,	, η

5.33

5.34

17, –

.

17

		$E_s \cdot 10^{-3}$, $($ / 2 $)$
	-I, A-II	210 (2100)
	A-III	200 (2000)
	A-IV, A-V	190 (1900)
	A-III	180 (1800)
A	-I	170 (1700)

5.35

, 18.

18

	15	20	25	30	35	40
,	25	23	20	18	15	10

;

· .;
;
,
,

, ,

6.2

,

41.13330	.2012				
	;				
6.3	,	,	,		;
6.4	, -			,	
6.5			,	()
6.6	,	,		,)
6.7		0,05 %			
6.8	2,5 d, d –			:	
	20 1,5 ,		,	: 1,5 ;	,

- 60 .

		: - 60 ; - 40 .
	20,	
		15 10 .
		60 .
60	6.9	$\mu \leq 0,008$
	6.10	, 40 %.
	6.11	
		10 ,
	6 . 6.12	
	6.13	10 %
	6.14	•
	6.15	,
		, ()
	6.16	700
0,1 %	6	400 , ,
	200 6.17	, – ,

41.13330.2012			500			
6.18			300	,		
_	20d ,	<i>d</i> –		500		15 <i>d</i> ,
			10 <i>d</i> 300	3 %,		
6.19			() .		(,
,) 450 –	h/2	; ; (450	1/4) 150 ; - h/3	500 ;		
) (3/4) <i>h</i>	500 ;	2000	2000 , (3/4) h .	h/3; 300 - 2000	_	
6.20	,		30	,		
6.21		,			,	
6.22			•			
			$si \leq s$ (si s –		٠

). 6.23

	· ,	,
, 6.24	,	,
,	, -II	16 .
6.25		
6.26	6.26 – 6.31.	
,	,	
6.27	,	()
6.28		
6.29	10 ,	,
	-III	
6.30		
	, (, , , , , , , , , , , , , , , , , ,	60 %
,	,	
).		,
%,	, , 30 %	,

	, $A_{sw,ad} = 0.2 \left(\sigma_{sp} / R_{sw}\right) A_{sp},$	(20)
	, : $A_{sw,ad} = 0.3 \left(\sigma_{sp} / R_{sw}\right) A_{sp} ,$	(21)
$egin{array}{lll} \sigma_{sp} & - \ A_{sp} & - \end{array}$;
6.31	-II A	A-III.
7	,	
7.1	58.13330.	
,	. , , ,	
7.2	, : -	8;
	9 10.	:
,	8; _	
()	, 9.
,	(<i>)</i> .

)	,				
7.3	-			•	,					
			,				:			,
		_				;				,
		_		,						,
7.4			I II	,	•			,		
					,				,	
		٠								
									,	
7.5								,		
,					,					
7.6	()					
	(19							•		
7.7					(,				,
		,),		,				,
								,		
							•			
							,			
7.8										•
							_		9.	
							,			
7.9		,		,		,	•		(-	
1.7									`)	,

```
41.13330.2012
```

7.10

. (. 7.7), -: N = D - Z; M = Dz (D Z -; z -).

7.11

•

19

		$-b \le 3 h$		
1	$l/h \ge 6$	_	+	_
2	$3 \le l/h < 6$		+	+
3	l/h < 3	-	ı	+
		$-b \le 3 h$		
4	$l/h \ge 3$	_	+	_
5	$1,5 \le l/h < 3$		+	+
6	l/h< 1,5		_	+
		-b>3 h		
7	$a/h \ge 6$		+	_
8	$3 \le a / h < 6$		+	+
9	a/h < 3		_	+
				_
10	$t/R \le 0,1$,	+	_
11	$0,1 < t/R \le 0,25$,	+	+
12	t/R > 0.25	,	_	+
		- :		
	l- () b $h-$;	·	
	<i>b n</i> – <i>a</i> –	;	;	
	t- ,	;		
	R-	,		

7.12

, 4.7.

40.13330.

	7.13	,	· · , · · · · · · · · · · · · · · · · ·	,
	,	, $lpha_{2b}$ – .	$plpha_{2b}, \qquad p -$	
()	,		
			$lpha_{2b}$	I II
	, 1,0 – 0 –	$lpha_{2b}$:	;	
	7.14		,	
(7.14).	, , ,	
	7.16	, , (,	

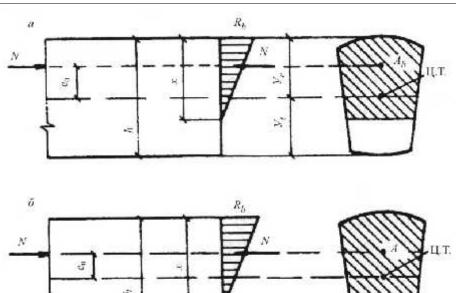
4	41.13330.2012				
	7.17		· 10 ⁶		
	,	(,	.).		,
	8				
	8.1	,	, 19),		
		,	10)	,	
	8.2	(19)		
		,			
		,		,	,
	8.3	,		,	
			,		
	8.4			10.	
		, , , , , , , , , , , , , , , , , , ,	$V_{c}\gamma_{b}R_{bt}W_{t}$,		(22
		lc , n- c-	,		58.13330;
b =	b1 · b2 · b3 · b4 ·			; 5;	
		$R_{bt}-\ W_t-$;
	8.5			,	

(1)

.

 $\gamma_{lc}\gamma_n\sigma_b = \varphi\gamma_c\gamma_bR_b, \qquad (23)$

.


 σ_b - φ - ,

20;

 $b = b_1 \cdot b_2 \cdot b_{14} \cdot b_{15};$ $R_b -$

20

l_0/b	l_0/r	
		φ
4	14	1,0
4	14	0,98
6	21	0,98 0,96
8	28	0,91
10	35	0,86
_	, : l ₀ -	; b -
	; <i>r</i> –	•

- ; - 1- ,

```
\gamma_{lc}\gamma_n N \leq 1.5\gamma_c\gamma_b \varphi(0.5-\eta)R_b F,
                                                                                                                                                                                             (24)
     F = bh -
\eta = e_0 / h -
                                                        \gamma_{lc}\gamma_n(Ne_0/W_t-N/F) \leq \varphi\gamma_c\gamma_hR_{bt},
                                                                                                                                                                                             (25)
  W_t –
   \gamma_b = \gamma_{b1} \cdot \gamma_{b2} \cdot \gamma_{b3} \cdot \gamma_{b4} \cdot \gamma_{b13} \cdot \gamma_{b14} \cdot \gamma_{b15}.
                                    (25)
                                                                                                             e_0 \leq W_t / F.
                                                                                                                        l_0 / b > 12 l_0 / r > 35
   8.6
   8.7
                                                                                                                                                                                           (24),
                                      0,3 h
                                                                                                                        0,325 h -
                                                                                                                  e_0 > 0.3 h (
                                                                                                                                                     e_0 > 0.325 h
                                                                       \gamma_{lc}\gamma_n\sigma_{yt} \leq \varphi\gamma_c\gamma_bR_{bt},
                                                                                                                                                                                             (26)
 \sigma_{yt} –
                                                                                                                                    h_{yt},
                                                                        \sigma_{yt},
    ).
                                                                                                                                      20
                                                                        \gamma_{lc}\gamma_n\sigma_b \leq 12\varphi\gamma_c\gamma_bR_{bt},
                                                                                                                                                                                             (27)
\gamma_b = \gamma_{b1} \cdot \gamma_{b5} \cdot \gamma_{b13} \cdot \gamma_{b14} \cdot \gamma_{b15} \,.
   8.8
                                                                        \gamma_{lc}\gamma_n\sigma_{mt} \leq \gamma_c\gamma_b R_{bt},
                                                                                                                                                                                             (28)
\gamma_b = \gamma_{b1} \cdot \gamma_{b2} \cdot \gamma_{b3} \cdot \gamma_{b5} \cdot \gamma_{b13} \cdot \gamma_{b14} \cdot \gamma_{b15};
```

 σ_{mt}

 $\sigma_{mt(mc)} = (\sigma_x + \sigma_y) / 2 \pm \left\{ \left[\left(\sigma_x - \sigma_y \right) / 2 \right]^2 + \tau_{xy}^2 \right\}^{\frac{1}{2}},$ (29) $\sigma_x \quad \sigma_y \quad \tau_{xy}$ (29) σ_x τ_{xy} 30° $\tau_{xy} = QS_y / (Ib) + [M \operatorname{tg}\theta / (Ih)] \cdot (1,5y^2 - hy),$ (30)y b3 = 1,0 ($h_t = \infty$). 8.9 σ_{mt} σ_m (30). $\gamma_{lc}\gamma_n\sigma_m \leq \gamma_c\gamma_bR_b$, (31) $\gamma_b = \gamma_{b1} \cdot \gamma_{b2} \cdot \gamma_{b14} \cdot \gamma_{b15} \,.$ 8.10

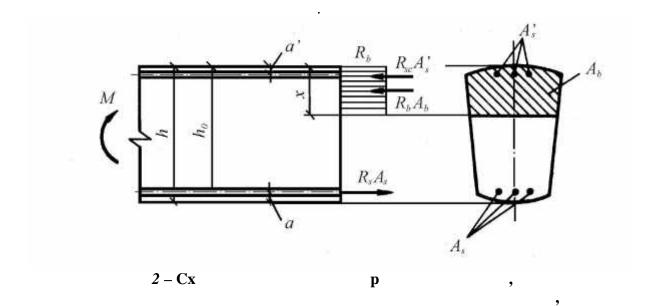
.

31

19),

). 8.11 R_b , R_s (R_{si} ()); R_{sc} R'_{si} ; 1,5 , 8.12 $\xi = x / h_0$ ξ_R , R_s ξ $\xi \leq \xi_R$. 21,

	ξ_R		
	B17,5	20 30	35
A-I	0,70	0,65	0,60
A-II, A-III, Bp-I	0,65	0,60	0,50


$$\gamma_b R_b A_b + \gamma_s R_{sc} A_s' + \gamma_s R_{si}' A_{si}' = \gamma_s R_s A_s + \gamma_s R_{si} A_{si}. \tag{33}$$

 R_s , R_{sc} , R_{si} , R'_{si} -

;

 $A_b, A_s, A'_s, A_{si}, A'_{si}$ -

 S_b, S'_s, S'_{si} –

$$\begin{split} A_b = bx; & A_{si} = bd_{si}; & A'_{si} = bd'_{si}; \\ S_b = A_b(h_0 - 0, 5x); & S'_s = A'_s(h_0 - a'); & S'_{si} = A'_{si}\left(h_0 + 0, 5d_{si}\right), \end{split}$$

```
41.13330.2012

\begin{array}{cccc}
h & b & - \\
a, a' & -
\end{array}

d_{si}, d'_{si} & -
```

 d_{si} , d'_{si} - ; A_{si} A'_{s} A'_{s} $h_0 = h - y_s - d'_s$.

 A_s

 A_s'

(2)

 $y_{s} = \left[R_{s} A_{s} \left(a + d_{si} \right) + 0.5 R_{si} A_{si} d_{si} \right] / \left(R_{s} A_{s} + R_{si} A_{si} \right). \tag{34}$

, (32) (33)

(32) (33) :

$$\gamma_l \gamma_n M \le \gamma_c \left[\gamma_b R_b bx (h_0 - 0.5x) + \gamma_s R_{sc} A_s'(h_0 - a') \right]; \tag{35}$$

$$\gamma_b R_b b x + \gamma_s R_{sc} A_s' = \gamma_s R_s A_s. \tag{36}$$

30

30 $\xi > \xi_R$ (34) – (38), $x = \xi_R h_0$.

.

8.15 30

(3) :

$$\gamma_{lc}\gamma_n Ne \le \gamma_c \left(\gamma_b R_b S_b + \gamma_s R_{sc} S_s' + \gamma_s R_{si} S_{si}'\right), \tag{37}$$

e – . . .

:

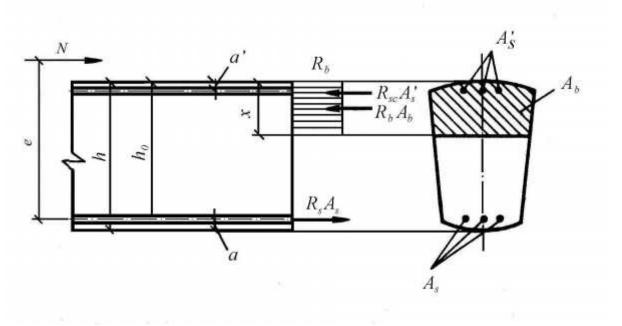
 $\xi \leq \xi_R$:

$$\gamma_{lc}\gamma_n N \le \gamma_c \left(\gamma_b R_b A_b + \gamma_s R_{sc} A_s' + \gamma_s R_{si} A_{si}' - \gamma_s R_s A_s - \gamma_s R_{si} A_{si}\right); \tag{38}$$

 $\xi > \xi_R$:

$$\gamma_{lc}\gamma_n N \le \gamma_c \left(\gamma_b R_b A_b + \gamma_s R_{sc} A_s' + \gamma_s R_{si} A_{si}' - \gamma_s \sigma_s A_s - \gamma_s \sigma_{si} A_{si}\right), \tag{39}$$

 $\sigma_s \quad \sigma_{si} \quad - \quad \vdots$


$$\sigma_s = \left\{ \left[2(1-\xi)/(1-\xi_R) \right] - 1 \right\} R_s, \qquad (40)$$

$$\sigma_{si} = \left\{ \left[2(1-\xi)/(1-\xi_R) \right] - 1 \right\} R_{si}. \tag{41}$$

:

$$A_b = bx; A_{si} = bd_{si}; A'_{si} = bd'_{si}; S_b = bx(h_0 - 0, 5x);$$

$$S'_s = A'_s(h_0 - a'); S'_{si} = bd_{si}(h_0 - 0, 5d'_{si})$$

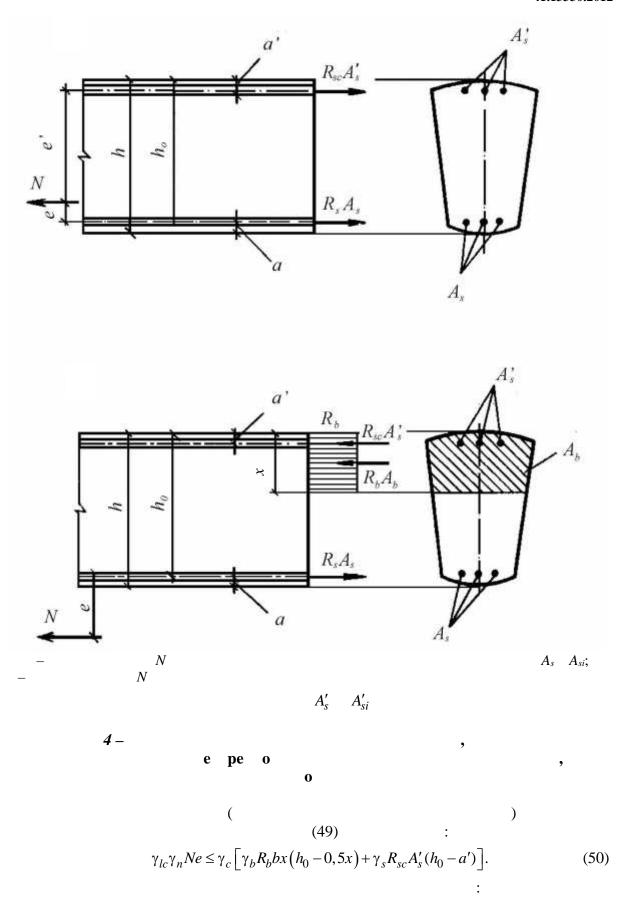
(37) – (39)

3 –

(37)

$$\gamma_{lc}\gamma_n Ne \le \gamma_c \left[\gamma_b R_b bx \left(h_0 - 0.5x \right) + \gamma_s R_{sc} A_s' \left(h_0 - a' \right) \right]. \tag{42}$$

 $\xi \leq \xi_R$:


$$\gamma_{lc}\gamma_n N \le \gamma_c (\gamma_b R_b b x + \gamma_s R_{sc} A_s' - \gamma_s R_s A_s); \tag{43}$$

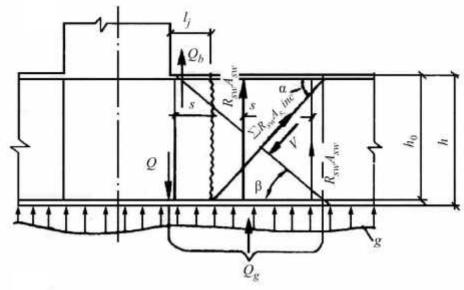
 $\xi > \xi_R$:

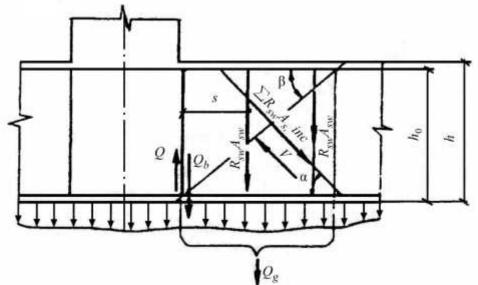
$$\gamma_{lc}\gamma_n N \le \gamma_c \left(\gamma_b R_b b x + \gamma_s R_{sc} A_s' - \gamma_s \sigma_s A_s \right), \tag{44}$$

$$\sigma_s$$
 – (40).

8.16 $l_0/r \ge 35$ $l_0 / h \ge 10$ 8.17) *N*. N A'_s A'_{si} A_s A_{si} $\gamma_{lc}\gamma_n Ne/(e+e') \leq \gamma_c (\gamma_s R_s A'_s + \gamma_s R_{si} A'_{si});$ (45) $\gamma_{lc}\gamma_{n}Ne'/\left(e+e'\right)\leq\gamma_{c}\left(\gamma_{s}R_{s}A_{s}+\gamma_{s}R_{si}A_{si}\right).$ (46)(34). A'_s A'_{si} $y_{s}' = \left[R_{sc} A_{s}' \left(a' + d_{si}' \right) + 0,5 R_{si} A_{si}' d_{si}' \right] / \left(R_{s} A_{s}' + R_{si} A_{si}' \right).$ (47) (45), (46) A_{si} , A'_{si} , d_{si} d'_{si} . A'_{s} A'_{si} 4,) $\gamma_{lc}\gamma_n Ne \leq \gamma_c \left(\gamma_b R_b S_b + \gamma_s R_{sc} S_s' + \gamma_s R_{si}' S_{si}'\right).$ (48) $\gamma_{lc}\gamma_n N \leq \gamma_c \left(\gamma_s R_s A_s + \gamma_s R_{si} A_{si} - \gamma_b R_b A_b - \gamma_s R_{sc} A_s' - \gamma_s R_{si}' A_{si}' \right).$ (49)(48) (49)


```
\gamma_{lc}\gamma_n N \leq \gamma_c \left(\gamma_s R_s A_s - \gamma_s R_{sc} A_s' - \gamma_b R_b bx\right).
                                                                                                                                                                                        (51)
                        \xi > \xi_R
                                                                                                                                                                          x=\xi_R h_0.
                                                                                                                                          (50),
(
            8.18
                                                            \gamma_{lc}\gamma_n N \leq \gamma_c \left(\gamma_s R_s A_s + \gamma_s R_{si} A_{si}\right).
                                                                                                                                                                                        (52)
                                                                                                    A_{si} = b d_{si}.
                                                             (
                                                                                                                                        )
                                                                                                                                                                                        (52)
                                                                           \gamma_{lc}\gamma_n N \leq \gamma_c \gamma_s R_s A_s.
                                                                                                                                                                                        (53)
                                   N
                                              4, ).
            8.19
(
      .),
                                                                           \gamma_{lc}\gamma_n\sigma_s \leq \gamma_c\gamma_sR_s;
                                                                                                                                                                                        (54)
                                                                            \gamma_{lc}\gamma_n\sigma_{si} \leq \gamma_c\gamma_sR_{si},
                                                                                                                                                                                        (55)
        \sigma_s \quad \sigma_{si} -
            8.20
                                                                           \gamma_{lc}\gamma_n Q \leq 0,25\gamma_c\gamma_{b7}R_bbh_0,
                                                                                                                                                                                        (56)
        b -
            8.21
              )
                                                                           \gamma_{lc}\gamma_n Q \leq 0,25\gamma_c\gamma_{b7}\gamma_j R_{bt}bh_0,
                                                                                                                                                                                        (57)
               )
                                                                           \gamma_{lc}\gamma_{n}Q \leq \gamma_{c}\gamma_{b7}Q_{b},
                                                                                                                                                                                        (58)
        Q_b –
                                                                           Q_b \le \varphi_2 \varphi_3 \gamma_i R_{bt} b h_0 \operatorname{tg} \beta,
                                                                                                                                                                                        (59)
                                         0.5 + 2 \xi;
                  \varphi_2
                                                                                                                   h < 0.6 ;
        \phi_3 = 1,0
                0,83
                                                                                                                   h \ge 0.6 ;
                                                                                                                                                                            22.
```


l_j / h_j	0,45	0,46 0,64	0,65
j	1,0	$1 - [(l_j/h_j) - 0.45]$	0,80


22:

 l_i –

(5,);

 h_i –

-, « » « »

5 - ,

.

ξ:

$$\xi = \mu R_s / R_b; \tag{60}$$

 $\xi = \mu R_s / R_b \pm N / (bh_0 R_b). \tag{61}$

 $Q_b = 0$.

 $tg\beta = 2/\left[1 + M/\left(Q \ h_0\right)\right]. \tag{62}$

 $Q_{b1} = \left[0,6\varphi_s\varphi_3\left(1+\varphi_n\right)\gamma_jR_{bt}bh_0^2\right]/c, \tag{63}$

 $Q_{b1} = \varphi_s \varphi_3 \left(1 + \varphi_n \right) \gamma_j R_{bt} b h_0; \tag{64}$

 $Q_{b2} = \left[0.8 \varphi_s \varphi_3 \left(1 + \varphi_n \right) \gamma_j R_{bt} b h_0 \right] / \left[1 + M / (Q h_0) \right], \tag{65}$

 φ_s , ,

 $\varphi_s = 1 + 50A_s / (bh_0) \tag{66}$

2,0;

 φ_n , (

),

:

 $\varphi_n = 0.1N / (R_{bt}bh_0), \tag{67}$

0,5;

:

 $\varphi_n = 0, 2N / \left(R_{bt} b h_0 \right), \tag{68}$

0,8 ;

c –

(62) (65) M Q -

•

 Q_{b1} (63).

 g_1 $c = \left\{ \left[[0, 6\varphi_s (1 + \varphi_n) \gamma_j R_{bt} b h_0^2] / g_1 \right\} \right\}^{1/2}.$ (69)(58) Q_b Q_{b1} (65) (58) Q_{b2} $Q_b = Q_{b2}$. (58) 8.22 5) ($\gamma_{lc} \gamma_n Q_1 \leq \gamma_c \left(\sum \gamma_s R_{sw} A_{sw} + \sum \gamma_s R_{sw} A_{s, inc} \sin \alpha + \gamma_{b7} Q_b \right),$ (70) $\sum \gamma_s R_{sw} A_{sw}$; $\sum \gamma_s R_{sw} A_{s,inc} \sin \alpha$ α -5, , $Q_1 = Q - Q_g + V \cos\beta,$ (71) V – $\alpha_{2b} = 1,0.$

 Q_g

$$\gamma_{lc}\gamma_n Q \le \gamma_c \left(\gamma_{b7} Q_{b1} + Q_{sw}\right); \tag{72}$$

 $\gamma_{lc}\gamma_n Q \le \gamma_c \left(\gamma_{b7} Q_{b2} + Q_{sw}\right),\tag{73}$

 Q_{sw} – ,

 $Q_{sw} = q_{sw} \left\{ \left[0, 6\varphi_s \left(1 + \varphi_n \right) \gamma_j R_{bt} b h_0^2 \right] / q_{sw} \right\}^{\frac{1}{2}}, \tag{74}$

 q_{sw} —

 $q_{sw} = \gamma_s R_{sw} A_{sw} / s, \tag{75}$

s – .

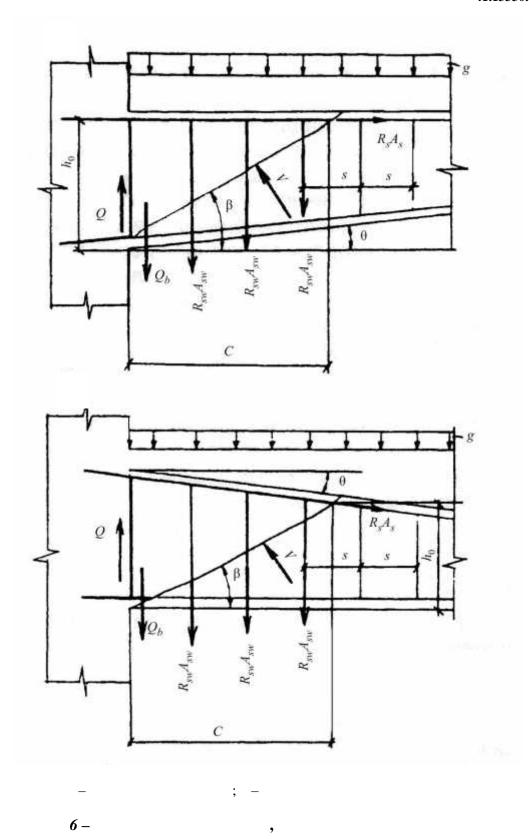
(72) (73). 8.24 (),

,

, Smax.

 $S_{\text{max}} = \gamma_c \gamma_{b7} \varphi_2 R_{bt} b h_0^2 / \gamma_{lc} \gamma_n Q_1.$ (76)

8.25


,

·

(6,);

,

.


```
41.13330.2012
```

8.26 ,

, , (),

7).

$$\gamma_{lc}\gamma_{n}M \leq \gamma_{c}\left(\gamma_{s}R_{s}A_{s}z + \sum \gamma_{s}R_{sw}A_{s,inc}z_{s,inc} + \sum \gamma_{s}R_{sw}A_{sw}z_{sw}\right), \tag{77}$$

$$M - \tag{}$$

 $\gamma_s R_s A_s z; \sum \gamma_s R_{sw} A_{s,inc} z_{s,inc}; \sum \gamma_s R_{sw} A_{sw} z_{sw} -$

 $z; z_{s,inc}; z_{sw}$ -

,

,		
	, $Q_b=0$.	
8.27	, 8.14.	
	:	
	; ;	
	, , , , , , , , , , , , , , , , , , ,	,
	$l_g = \left[\left(\gamma_{lc} \gamma_n Q - 0.75 \gamma_c \gamma_s R_{sw} A_{s,inc} \sin \alpha \right) / \left(1.5 q_{sw} \right) \right] + 5d,$	(78)
Q –	;	
$A_{s,inc}$; α –	, l_g ;	,
q_{sw} –	*8;	l_g ,
d-	$q_{sw} = \gamma_s R_{sw} A_{sw} / s,$, ;	(79)
	$\gamma_{lc}\gamma_n Q \leq 0.25\gamma_c\gamma_{b7}R_{bt,ser}bh_0$	(80)
8.28 h (, ,),	
8.29		
,	,	
8.30	· ,	,

 $\gamma_{lc}\gamma_n\sigma_s \le \gamma_c\gamma_{s1}R_s, \tag{82}$ $\sigma \quad \sigma_s -$

 $\gamma_{lc}\gamma_n\sigma \leq \gamma_c\gamma_bR_b$,

 $\gamma_b = \gamma_{b7} \cdot \gamma_{b12} \cdot \gamma_{b14} \cdot \gamma_{b15}.$

45

(81)

8.31 σ_s 5.35. 9.7 8.32 $\gamma_{lc}\gamma_n\sigma_{mt} \leq \gamma_c\gamma_b R_{bt}$, (83) σ_{mt} – $\gamma_b = \gamma_{b5} \cdot \gamma_{b7} \cdot \gamma_{b12} \cdot \gamma_{b13} \cdot \gamma_{b14} \cdot \gamma_{b15}.$ (29) 8.8. $\sigma_y = 0$, $\sigma_x \quad \tau_{xy}$ $\sigma_x = My / I_{red} \pm N / A_{red},$ (84) $\tau_{xy} = QS_{red} / (I_{red}b),$ (85) Ared Ired - S_{red} 5.35. τ_{xy} 8.8. (83) $\sigma_s \leq s_1 R_s$. 9 9.1 :)

)) 0,2 9.2 $\gamma_{lc} N \leq \gamma_c \gamma_b R_{bt,ser} A_{red}$, (86) $b = b7 \cdot b8 \cdot b9 \cdot b13 \cdot b14 \cdot b15.$ $_{b8} \cdot _{b9} > 2$ $b8 \cdot b9 = 2,0;$ $\gamma_{lc}M \leq \gamma_c \gamma_b R_{bt,ser} W_{t,red}$, (87) $b = b7 \cdot b8 \cdot b10 \cdot b13 \cdot b14 \cdot b15.$ $b8 \cdot b10 = 2,0;$ $b8 \cdot b10 > 2$ $\gamma_{lc}(M/W_{t,red}-N/A_{red}) \leq \gamma_c \gamma_b R_{bt,ser}$, (88) $b = b7 \cdot b8 \cdot b10 \cdot b13 \cdot b14 \cdot b15$. $b8 \cdot b10 = 2,0;$ $b8 \cdot b_{10} > 2$ $\gamma_{lc}(M/\gamma_{b10}W_{t,red}+N/\gamma_{b9}A_{red}) \leq \gamma_{c}\gamma_{b}R_{bt,ser}$, (89) $b = b7 \cdot b8 \cdot b13 \cdot b14 \cdot b15$. (89)b9 b10 — (86) - (89)9.3 n = 1.0 , lc = 1.0(22)(25), $R_{bt,ser}$ R_{bt} .

```
41.13330.2012
    9.4
                                               \gamma_{lc}\sigma_{mt} \leq \gamma_c\gamma_b R_{bt},
                                                                                                                                                              (90)
   b = b1 \cdot b2 \cdot b3 \cdot b5 \cdot b13 \cdot b14 \cdot b15 -
  b = b7 \cdot b8 \cdot b10 \cdot b11 \cdot b13 \cdot b14 \cdot b15 -
  b = b1 \cdot b2 \cdot b5 \cdot b12 \cdot b13 \cdot b14 \cdot b15 -
        b = b7 \cdot b11 \cdot b12 \cdot b13 \cdot b14 \cdot b15 -
                                                                                                                                                              8.8.
                                 (90)
                                                                           b3 —
                                                                                                                                                    b10 -
                                                                                                                        h_t
                                                         b8
                                                                       )
    9.5
                                                                                                                                                              (91)
                                                            a_{cr} \leq \gamma_c \Delta_{cr},
     a_{cr} -
                                                                                                                                               9.8.
    \Delta_{cr} -
    9.6
                                              a_{cr} = \delta \varphi_l \eta \left[ \left( \sigma_s - \sigma_{s,bg} \right) / E_s \right] \cdot 7 \left( 4 - 100 \mu \right) d^{\frac{1}{2}},
                                                                                                                                                              (92)
       δ -
                                                                                            - 1,0;
- 1,2;
```

 $F_{l}/F_{c} < 2/3 - 1.0;$ $(F_c F_l -$. .) (48

 $F_l/F_c \ge 2/3 - 1,3;$

```
)
                              );
      );
                                                                -0,9;
   \eta –
                                                                   – 1,0,
                                           – 1,4,
                                                                     -1,2;
                                                                                                                 9.7
  \sigma_s
                                                                                                                  7.12
             7.13;
\sigma_{s,bg}
                                                                    \sigma_{s,bg} = 20
                                  \sigma_{s,bg}=0;
   μ
                                                  0,02;
             \mu = A_s / (b h_0),
    d
   n –
      9.7
                                               \sigma_s = M / (A_s z);
                                                                                                                       (93)
                                               \sigma_s = N/A_s;
                                                                                                                       (94)
                                                \sigma_s = N(e \pm z)/A_s z;
                                                                                                                       (95)
                          S
                                                \sigma_s = Ne'/A_s(h_0 - a');
                                                                                                                       (96)
                          S'
                                               \sigma_s = Ne^{\dot{s}} A_s(h_0 - a^{\dot{s}}).
                                                                                                                       (97)
                         (93)
        » —
                                  (95) z (
                        (93)
                                                                                    )
```

```
41.13330.2012
```

9.8		$\Delta_{cr},$,	22 24
	II – IV	,	23, 24.
,	0,5 .	1,3; 1,6; 2,0.	$\Delta_{cr},$,
	23 24 -I, A-III, Bp-I.	Δ_{cr}	,
	Cl So	O ₄ , - , 1000 / ,	$1 \cdot / \ , \ \Delta_{cr}$
0,25 · /,	•		- ,
Δ_{cr}			
25.00	40	Δ_{cr}	
25 %.	Δ_{cr} (1,5) 0,5.

			/	
		,		$\Delta_{cr},$, $ m I$
<i>W</i> , · /	10	50	200	
0,25 .	0,50	0,48	0,45	
0,4	0,55	0,50	0,45	0,05
0,4	0,48	0,45	0,42	0,10
0,8	0,63	0,48	0,52	0,05
0,8	0,59	0,55	0,50	0,10
0,8	0,56	0,52	0,48	0,15
0,8	0,54	0,50	0,46	0,20
0,8	0,52	0,49	0,45	0,25
0,8	0,50	0,47	0,44	0,35
0,8	0,48	0,45	0,43	0,50
1,6	0,70	0,69	0,64	0,05
1,6	0,70	0,66	0,62	0,10
1,6	0,68	0,64	0,60	0,15

			/		
		,		Δ_{cr} , ,	I
<i>W</i> , · /	10	50	200		
1,6	0,66	0,62	0,58	0,20	
1,6	0,64	0,60	0,57	0,25	
1,6	0,62	0,58	0,55	0,35	
1,6	0,60	0,56	0,53	0,50	
2,4	0,70	0,70	0,70	0,05	
2,4	0,70	0,70	0,69	0,10	
2,4	0,70	0,70	0,66	0,15	
2,4	0,70	0,66	0,62	0,25	
2,4	0,68	0,64	0,60	0,35	
2,4	0,66	0,62	0,59	0,50	
3,2		!	!	'	

24

			I		$\Delta_{cr},$,
		[Cl [/]] +	$0,25$ [SO_4 $^{//}$]		, /
		50	100	200	400 – 1000
	5	0,50	0,40	0,35	0,30
	50	0,45	0,35	0,30	0,25
	300	0,40	0,30	0,25	0,20
:					
100	5	0,30	0,25	0,20	0,15
	50	0,30	0,20	0,15	0,10
	300	0,30	0,20	0,10	0,05
200 - 1000	5	0,25	0,20	0,15	0,10
	50	0,20	0,15	0,10	0,05
	300	0,20	0,10	0,10	0,05
,	_	0,20	0,15	0,10	0,05

9.9

•

.

9.10

:

$$=0.9 b I_{red}, (98)$$

 $=0.8 b I_{red};$ (100)

 $= B (C+V)/(\delta C+V), \qquad (101)$ $- \qquad ; \qquad ; \qquad ; \qquad ; \qquad \delta - \qquad .$

 δ - $\delta = 1,5, \qquad \delta = 2,5, \qquad \delta = 2.$

10

10.2

, ,

,

	()	, ,	
,			,	58.13330
10.3 B				٠
10.4			•	
			:	
	, ,		,	
10.5		•	,	
10.6	•			
10.7				
10.7	I		I	
10.8		,	.1 .2	·
	$E_b(t) = 10^5 / \{1, 7 + 360\}$	$/\chi \left\{ \varphi[\ln(t/18)\right\}$	180 0) + 5, 2]}},	- (102)
$\begin{array}{ccc} \chi & - \\ t & - \end{array}$,		.3	;
t –	5.27.		180	
	I			.2
10.9	-			
)			:	:

```
A(t) \ge [\gamma_{b6} \eta \psi(t) R_{btn}]^2 / 2E_b(t).
                                                                                                                                                     (103)
                                                                                                                                                     (103)
                                                                                          1,3 d_{\text{max}}, d_{\text{max}} -
       )
                                           A(t) \leq [\gamma_{b6} \psi(t) R_{btn}]^2 / 2E_b(t);
                                                                                                                                                     (104)
      )
                                           A(t) \leq [\gamma_{b6} \psi(t) R_{bt}]^2 / 2E_b(t).
                                                                                                                                                     (105)
       A(t) -
                                                                                                              A(t)
                                                     10.10;
R_{btn}; R_{bt} -
                                                                                                                       5.13 5.14;
           η
                                                                                                                                        10.11;
       \psi(t) -
                                                                                                                                     10.12;
      E_b(t) -
                                                             − 1,0.
                        1,15,
     10.10
                                                A(t)
                                           A(t) = \int_{t_0}^t \sigma^+(\tau) \cdot \frac{\left[\varepsilon(\tau) - \alpha T(\tau)\right]}{\tau} \cdot dt;
                                                                                                                                                     (106)
                                           A(t) = \int_{t_0}^t \sigma^+(\tau) \cdot \frac{\left[\varepsilon(\tau) - \alpha(1+v)T(\tau)\right]}{\tau} \cdot dt,
                                                                                                                                                     (107)
 T(\tau)
                                                                                           τ;
  \varepsilon(\tau) -
\sigma^{+}(\tau) -
```

```
\sigma^{\scriptscriptstyle +}(\tau) = \sigma \; (\tau)
                                                                              \sigma(\tau) > 0;
                                                          \sigma^+(\tau) = 0
                                                                                \sigma(\tau) \leq 0,
         \sigma\left( \tau\right) -
         10.11
                                          η
                                                      \eta = (1 - u \ v_2)^{-1} \ ,
                                                                                                                                        (108)
              и
                          1,64
                                        q = 0.95;
                                        q = 0.90
                          1,28
                             1,04
                                           q = 0.85;
              v_2 -
                                       I II
                                                                                                               v_2
I II
         v_2 = 0.135
                                q = 0.95,
         v_2 = 0.173
                                q = 0.90,
         v_2 = 0,213
                                q = 0.85.
         10.12
                                    \psi(\tau)
                                                             .5
                                   1,0.
                                          I
                                                     II
                                                                                                       \psi(t)
         10.13
                                              I II
                     Ш
                              IV
(
                        )
                                                                                                                                        (109)
                                          \sigma(t) \leq b_3 \cdot b_6 \cdot \varepsilon_{\lim} \cdot \varphi(t) \cdot E_b(t),
                                                                                                   t;
        \sigma(t) –
                                                                                                                                            .6
         \epsilon_{lim} -
        \varphi(t) –
                                                                                                   \epsilon_{\text{lim}}
                                                                   .7
                                                                                    h_t
                                                                b3
```

```
(
                                                               )
                     M
N
Q
R_b, R_{bt}, R_{b,ser}, R_{bt,ser}
                                                                                       180
                                                                                                 (
                                                                                                       1
                                                                                                              );
                R_s, R_{si}
                   R_{sw}
                    R_{sc}
                    E_b
                     E_s
                     v_1
                                              E_b;
                               E_s
                     v_2
                      S -
                     S' -
                                )
```

```
)
    b -
    h -
  a, a'
                        S S'
h_0, h_0
                                         (h_0 = h - a; h_0' = h - a');
                                              (
                                                       );
                                                                        x/h_0;
    e_0
                                                       N
  e, e' –
                                                                                S
             S';
    d
    F
A_b
A_{red}
A_s, A_s
A_{sw}
                                                                S S';
 A_{s,inc} –
   I –
   I_{red} –
    I_s –
    I_b –
    S_b –
                          S;
S_s, S_s' –
                                                                               S_s
             S_s.
```

```
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b = 0
b =
```

()

.1 –

	$lpha_{bt}$	o -1	1 · 10 -5
	λ_b	/(· °)	2,67
	a_T	2/	$11 \cdot 10^{-7}$
	b	/(· °)	1
c	β	(² ·°)	
:			2.4
			24
, ,			(7 – 12)
			(7 − 12) ∞

.2 –

				, /	,
		1		,	
		3	7	28	90
	300	210 / 50	250 / 60	295 / 70	300 / 72
	400	250 / 60	295 / 70	345 / 82	355 / 85
	500	295 / 70	335 / 80	385 / 92	400 / 95
	300	175 / 42	230 / 55	270 / 65	280 / 67
,	400	210 / 50	265 / 63	320 / 77	335 / 80

Таблица Б.3 – Параметр х

Осадка	Максимальный					х при кл	х при классе бетона по прочности на сжатие	на по прс	чности н	а сжатие				
конуса бетонной смеси, см	размер крупного заполнителя, мм	B5	B7,5	B10	B12,5	B15	B17,5	B20	B22,5	B25	B27,5	B30	B35	B40
Jlo 4	40	27	37	45	54	62	69	77	83	06	86	106	125	146
	80	32	4	99	19	77	87	86	106	116	125	133	153	180
	120	37	52	29	77	06	103	116	125	139	150	162	191	216
4-8	40	20	28	35	14	47	52	58	63	69	74	80	94	115
	80	25	37	42	20	58	65	72	79	98	93	102	120	139
	120	59	40	20	09	69	77	98	94	102	110	116	132	154
Свыше 8	40	=	15	19	23	26	30	35	38	42	46	20	62	74
	80	15	19	24	29	33	37	42	47	52	99	09	72	98
	120	8	24	59	35	40	45	20	55	09	9	69	83	86

Таблица Б.4 - Характеристики ползучести бетона

Вольного записания		Мера пол	изучести бетон	на с (т, т) - 10 5	, МПа -1, при,	динтельности	загружения (сения $(t-t)$, сут	
Dospaci sai pywenia, cyl	0	10	25	50	100	200	200	1000	1500
0,125	0	0,05	16,00	20,00	24,00	27,00	31,00	32,00	32,00
10	0	1,10	1,76	2,23	2,67	3,06	3,48	3,60	3,60
30	0	0,85	1,41	1,80	2,18	2,52	2,89	3,00	3,00
112	0	0,50	0,80	1,18	1,45	1,70	1,92	1,98	1,98
205	0	0,35	0,67	0.88	1,09	1,26	1,42	1,46	1,46
512	0	0,21	0,46	9,65	0,80	0,91	86'0	1,00	1,00
1500	0	0,21	0,46	0,65	08'0	16'0	86.0	1,00	1,00

Таблица Б.5 – Коэффициент ψ (1)

Возраст достижения бетоном					Козф	фициент	du (s) h	и возрас	те бетона	1, cyr				
прочности по классу на сжатие, сут	6	7	14	28	45	06	180	360	1,5	2,0	2,5	3,0	3,5	4,0
081	0,31	0,47	0,62	0,78	0,85	0,93	1,00	1,07	1,12	1,18	1,23	1,27	1,32	1,37
360	0,29	0,44	65'0	0,72	08'0	98'0	0,93	1,00	1,05	1,10	1,15	1,19	1,23	1,27

Таблица Б.6 - Предельная растяжимость бетона

Осадка конуса	Максимальный		1	Іредельн	Іредельная растяжі	имость б	етона _{Евт}	10 5 при	классе бе-	гона по п	имость бетона в _{іли} · 10 ⁵ при классе бетона по прочности на сжатие	на сжати	e	
бетонной смеси, см	размер крупного заполнителя, мм	B5	B7,5	B10	B12,5	B15	B17,5	B20	B22,5	B25	B27,5	B30	B35	B40
До 4	40	3,5	3,7	4,0	4,2	4,5	4,8	5,0	5,3	5,5	8,8	0,9	6,5	7,0
	80	3,0	3,2	3,5	3,7	4,0	4,3	4,5	4,8	5,0	5,3	5,5	0,9	6,5
	120	2,7	3,0	3,2	3,5	3,7	4,0	4,2	4,5	4,7	5,0	5,2	5,7	6,2
4 - 8	40	4,0	4,2	4,5	4,7	5,0	5,3	5,5	5,8	0,9	6,3	6,5	7,0	7,5
	80	3,5	3,7	4,0	4,2	4,5	4,8	5,0	5,3	5,5	5,8	0,9	6,5	7,0
	120	3,2	3,5	3,7	4,0	4,2	4,5	4,7	5,0	5,2	5,5	5,7	6,2	6,7
Свыше 8	40	0,9	6,2	6,4	6,5	6.7	6,9	7.0	7,2	7,4	9,7	7,7	8,0	8,5
	80	5,0	5,2	5,4	9,6	5,8	0,9	6,2	6,4	9,9	8,9	7,0	7,5	7,8
	120	4.5	4.7	4.9	5.1	5,3	5.6	5.8	0.9	6.2	6.5	2.9	7.0	7.5

Таблица Б.7 – Коэффициент ф (t)

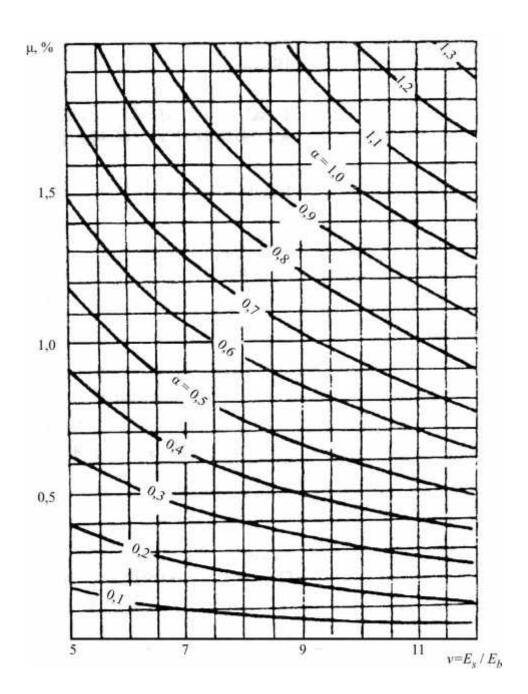
Возраст	3			α (x) φ	ри классе (бетона по п	и изоньоф	на сжатие в	возрасте 1.	: 180 cyr			
бетона, сут	BS	B7,5	B10	B12,5	B15	B17,5	B20	B22,5		B27,5	B30	B35	B40
3	0.94	68'0	0,84	08'0	9/.0	0,74	0,71	69.0	99'0	0,64	0,63	0,61	09'0
7	0,95	06'0	98'0	0,83	0,80	0,78	0,76	0,74	0,73	0,72	0,71	0,70	0,70
14	96'0	0,92	68'0	0,89	0,84	0.82	0,81	08'0	0,79	0,78	0,78	0,77	0,77
28	0,97	0.95	0,93	16'0	06'0	68'0	0,88	0,87	0,87	98'0	98'0	98'0	98'0
45	860	0,97	0,95	0,94	0,93	0,92	0,92	0,92	0,92	16'0	16'0	0,91	16'0
06	66'0	66'0	86'0	86'0	86'0	86'0	86'0	86'0	86'0	86'0	86'0	86'0	86'0
180 и более	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

.8 –

	D5 D17 5	D20 D40	D5 D17 5	D20 D20	D. 5. 17. 5	D20 D40
	B5÷B17,5	B20÷B40	B5÷B17,5	B20÷B30	B5÷B17,5	B20÷B40
	1,1	1,2	1,0	1,1	1,0	1,1
-						
tgφ						
,	0,3	0,4	0,2	0,3	0,1	0,2
	_					
90 %.						

()

.1


		_	_	-	_
		1			
		-3	, ,		
1					
_					
,					
:					
			+	<u>±</u>	
;					
,	\oplus		+	+	(+)
;					,
)	\oplus		+	+	(+)
:	•				(')
,	+	±	+	+	(+)
;	'				(')
	+	+	+	+	(+)
,			'	•	(')
;					
,	+	+	+	+	(+)
2		±	+	±	(+) (+)
	+		T	<u>-</u>	(+)
,					
3 -				1	(1)
-	+			±	(+)

.1

				_		
						-
			-3+			
		+				
		+	-3+			
		+	-3+			
		()	() -3+			
1			31			
	_					
	;					
)	+	±	(+)		
	;	+	±	(+)		
	•	T	<u>-</u>			
)	+	<u>±</u>	(+)		
	:	+	<u>±</u>	(+)		
	;					
	,	+	+	(+)	+	
	;					
		+ +		(+)	+	
2	,	+	±			
	,					
3	-	+	±			+
	- +			;		
	± –			7	_	
	- ; (+)-					
			,			
	;		,			
	⊕ −	,		•		

() **k**

1,0 0,8 0,6 0,4 0,2 (

$$\alpha = 4,4\xi^3 + 13,2\nu\mu(1-\xi)^2,$$
 (1)

$$B_k = aE_bI_0, (.2)$$

 I_0 – h_0 .

[1] 30 2009 . 384- « **».**

627.8.012.4 (083.74)					93.160
:		,	,	,	,
,					,
,					

2.06.08-87

« » . (495) 930-64-69; (495) 930-96-11; (495) 930-09-14

$60 \times 84^{1}/8$.	230 .	1656/12.

. , .18